<u>Megaloblastic Anaemia</u>

Aeitology and pathogenesis:

It is characterized by \downarrow DNA synthesis, while RNA & protein synthesis r N \rightarrow nucleo-cytoplasmic asynchrony (mature

cytoplasm e' defective nuclear chromatin).

Finally : cell → die (ineffective erythropoiesis)

or \rightarrow x terminal division \rightarrow survive as oversized cell e' short life span.

The defect in DNA synthesis occur in all proliferating tissues, e.g: BM, GIT etc...

Causes:

- B12 or abnormal metabolism
- Folate or abnormal metabolism.
- Other causes:
 - Erythroleukemia
 - Sideroblastic anaemia
 - Orotic aciduria (abn. Pyrimidine metabolism)
 - Cytotoxic drugs (interfere e' DNA synthesis)
 - Alcohol

Clinical picture:

- Most patients r detected on routine CBC by
 MCV (present before any other symptoms).
- General signs & symptoms of anaemia.
- Fever, jaundice (due to ineff.erythropoiesis)
- Purpura, infections.
- Anorexia, weight loss.
- GIT symptoms : diarrhea, constipation
- Palbable spleen
- Sterility (affection of gonads)

Figure 5.6 Megaloblastic anaemia: pallor and mild icterus in a patient with a haemoglobin count of 7.0 g/dL and a mean corpuscular volume of 132 fL.

Figure 5.7 Megaloblastic anaemia: glossitis – the tongue is beefy-red and painful.

From: Essential Haematology, 6th Edn. © A. V. Hoffbrand & P. A. H. Moss. Published 2011 by Blackwell Publishing Ltd.

Figure 5.8 Megaloblastic anaemia: angular cheilosis (stomatitis).

Neurological symptoms:

A-↓B12 (↓50 ng/L):

- bilateral peripheral neuritis.
- degeneration of posterior cord \rightarrow deep sensory loss.
- ▶ degeneration of pyramidal tracts → affection of motor muscles.
- optic atrophy, retinal haemorrhage .
- mental abnormalities.
- visual impairment due to: optic atrophy

retinal hge retrobulbular neuritis

- B- ↓ Folates:
 - mental changes
 - slowness
 - Dementia

All megaloblastic signs & symptoms r reversible by ttt Except CNS manifestations, as CNS cs r not regenerating cs, so its defect is permanent.

Diagnosis:

- careful history taking & clinical examination.
- lab investigations.

Lab investigations:

1-CBC:

RBCs :

- oval macrocytes, anisocytosis, poikilocytosis
- ▶ ↑ MCV (↑100 fl) unless combined e' Fe def

Dimorphic cs (macro & micro & MCV is nearly normal). **WBCs:**

- leucopenia
- hypersegmented neutrophils
- giant staff & juvenile
- leucoerythroplastic picture: immature RBCs (normoblasts) immature WBCs (juv & myelo)

Platelets: ↓

Reticulocytes:

mild \uparrow in relation to anaemia.

2-Bone marrow : is a must in megaloblastic an Hypercellular e' dyserythropoietic changes

In severe anaemia:

- BM : hypercellular
- M/E ratio: N or \downarrow
- primitive cells

Erythroid series:

- Megaloblasts: larger than normoblasts, normoblasts e' stippled chromatin (open, fine lacy appearance of nucleus) & cytoplasm is fully haemoglobinzed.
- Intercytoplasmic or internuclear bridges
- ▶ ↑ mitotic figures
- Basophilic stippling & Howel Jolly bodies (remnants of DNA)

Myeloid series:

Giant staff & juvenile

Hypersegmentation of nucleus of neutrophils.

Megakaryocytes:

May be enlarged e' hyperpolyoidy (no of nuclei)

Iron stain:

- iron in RES & in developing megaloblasts
- sideroblasts. Both r due to ineff. erythropoiesis

3-Ineffective Haematopoiesis:

- Indirect bilirubin
- Urobilinogen
- Stercobilinogen
- LDH † CO
- ► + Haptoglobin, + haemopexin
- ▶ ▲ Serum iron
- Lysosomes (ineffective granulopoiesis)
- +ve urine haemosedrin
- +ve Schumm's test (detection of metalbumin)

Figure 5.11 Megaloblastic anaemia: peripheral blood film showing oval macrocytes.

gure 5.12 Megaloblastic changes in the bone marrow in a patient with severe megaloblastic anaemia. -c) Erythroblasts showing fine, open stippled (primitive) appearance of the nuclear chromatin even in late Ils (pale cytoplasm with some haemoglobin formation). (d) Abnormal giant metamyelocytes and band forms.

4-Specific tests for B12:

- therapeutic tests
- serum B12
- methyl malonic acid execration test
- deoxy uridine suppression of thymidine uptake test
- tests to detect the cause of B12
- tests for vit B12 absorption.

5- Specific tests for folate:

- therapuetic tests
- deoxy uridine suppression of thymidine uptake test
- serum folates
- red cell folate
- ► FIGLU

6- Cytogenetics:

chromosomes show:

- random breaks
- spreading of centromere
- exaggeration of 2ry constrictions

due to:

Replication of chromosomal DNA in the presence of reduced concentration of one of the basis \rightarrow random breaks & spreading of centromere \rightarrow as thymidine is incomplete \rightarrow exaggeration of 2nd chromosomal constriction \rightarrow death in S phase \rightarrow Ineffective (haemopoiesis). erythropoiesis

Cell Cycle:

D.D:

Other causes of macrocytosis & hypersegmentation: Macrocytosis:

- Alcohol
- Liver disease
- ► ↑ Retics
- Aplastic anaemia
- 1ry acquired sideroblastic an.
- Myxoedema
- MDS
- Pregnancy
- Newborn

N.B:

In these situations, BM shows normoblasts rather than megaloblasts.

Macrocytes in normoblastic anaemia r round rather than oval in megaloblastic an.

Hypersegmentation:

- Renal failure
- Congenital abnormality

<u>Tests for B12 & folate</u>		
Vit B12	Folate	
1-Therapeutic test:		
Patient is placed on a diet low in B12 & folate for 1 week before		
starting ttt, then give:		
1 ug IM/d	100 ug orally/d	
	if malabsorption is suspected	
	give parental.	
	In case of B12 def., it responds	
	to higher dose 400ug/d	

Response:

- After 2 days ____ normoblastic picture return N
- After 3 days \rightarrow reticulocytosis (\uparrow on 3rd day peak on 6th day)
- After 7 days \rightarrow platelets \rightarrow N
 - [↑] Hb by 1 gm/dl/week
- After 14 days \rightarrow leucopoiesis \rightarrow N

Poor response:

- Combined causes (B12/folate def± iron def.)
- Complicated megaloblastic anaemia
- Severe folate def

So you must start ttt e' higher doses B12+folic acid may response

Vit B12	Folate	
2- Deoxy uridine suppression test		
In N BM:		
5-10 methyl THF _B12 → DHF		
deoxy uridine thy	vmidine	
So it suppress uptake of radioactive thymidine $< 10\%$		
In B12 or folate		
there is radioactive uptake of thymidine due to block of		
conversion of DU to thymidine		
corrected by		
B12, folic acid, folinic acid	any folate but not B12	
But not by methyl THF as		
It requires B12 to enter cell		
3- serum B12	3- serum folate	
3- serum B12 a-microbio	3- serum folate	
3- serum B12 a-microbio Lactobacillus leishmanii	3- serum folate Jogical assay lactobacillus casii (it feeds on	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth)	3- serum folate logical assay lactobacillus casii (it feeds on folate)	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i	3- serum folate logical assay lactobacillus casii (it feeds on folate) sotope dilution assay	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i	3- serum folate logical assay lactobacillus casii (it feeds on folate) sotope dilution assay	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i N level: 160-925 ng/L	3- serum folate logical assay Iactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i N level: 160-925 ng/L Border line: 100-160ng/L	3- serum folate logical assay lactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-6 ug/L 3-6 ug/L	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i N level: 160-925 ng/L Border line: 100-160ng/L Megaloblastic an.:	3- serum folate logical assay lactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-5 ug/L 3-6 ug/L	
3- serum B12a-microbioLactobacillus leishmanii(B12 is imp.for its growth)b-radio iN level: 160-925 ng/LBorder line: 100-160ng/LMegaloblastic an.:<100 ng/L	3- serum folate logical assay Iactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-5 ug/L 3-6 ug/L	
3- serum B12a-microbioLactobacillus leishmanii(B12 is imp.for its growth)b-radio ib-radio iN level: 160-925 ng/LBorder line: 100-160ng/LMegaloblastic an.:<100 ng/L	3- serum folate logical assay Iactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-5 ug/L 3-6 ug/L	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i N level: 160-925 ng/L Border line: 100-160ng/L Megaloblastic an.: <100 ng/L	3- serum folate Jogical assay Iactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-5 ug/L 3-6 ug/L	
3- serum B12 a-microbio Lactobacillus leishmanii (B12 is imp.for its growth) b-radio i N level: 160-925 ng/L Border line: 100-160ng/L Megaloblastic an.: <100 ng/L	3- serum folate Jogical assay lactobacillus casii (it feeds on folate) sotope dilution assay 3-5 ug/L 3-5 ug/L 3-6 ug/L	

B12	Folate
Raised serum B12:	Raised serum folate:
Recent therapy	► Severe B12 def (trap)
► ↑ TCI	[†] serum , ↓ red cell folate
Liver or kidney disease	Liver or kidney disease
 Bacterial contamination 	 Bacterial contamination
	Stagnant loop syndrome
	Haemolysed sample
	False low level:
	In patients taking drugs
	inhibiting L casii growth:
	as antibiotics (methotrexate
	trimethopreum)
4- Methyl malonic acid	4-Formi minoglutamic acid
(MMA) excretion:	excretion (FIGLU):
MMA MMA reductase	FIGLU folate glutamic a
→ B12	
Succinyl CoA	Urine (if x folate)
In megaloblastic an.,	Normally: -ve
MMA → urine	Overloading dose e' Histadine:
N excretion : 0-4 mg/d	[†] FIGLU in urine in:
Test can be more sensitive by	+ ve: folate def.
overloading the patient e'	2/3 B12 def.
Valine (10gm)	False +ve: liver dis
\uparrow MMA in urine > 4mg/d	malignancy
Test is +ve in:	False –ve: prgnancy
B12 def or	kwashiorkor
MMA reductase def	
5-serum MMA:	
serum MMA in serum	

Vit B12	Folate	
6- Detect cause of B12:	5-Detect stores (red cell	
History diet, drugs, operation,	folate):	
clinical	A-microbiologically	
B12 absorption must be tested	B-radioisotopic assay:	
Measurement of IF in:	Most of blood folate r inside	
Gastric juice after maximal	RBCs (10-20 times serum	
saturation e' pentagastrin	folate)	
	N =160-460 ug/L packed RBCs	
	↓ in :severe folate def.	
	2/3 meg an due to	
	B12	
	False N:	
	recent transfusion	
	↑ retics	
	N.B: this test can't diff between	
	folate &↓ B12	
6-7- serum homocysteine level:		
5 M THF		
homocystiene methionine		
It is fin:		
► B12 def		
 folate def 		
But a	lso in:	
renal disease		
▶ alc	coholism	

8- Tests for B12 absorption:

- Urinary excretion (Schilling test)
- Faecal excretion (measurement of radioactivity in urine or faeces).
- Hepatic uptake
- Plasma radioactivity
- Whole body counting

Principle of all methods:

- Oral dose of radioactive B12 labelled by 57 Co
- (1ug) is given orally alone
 - If there is malabsorption, repeat e' IF:
 - If corrected: pernicious an.
 - If not corrected: it is malabsorption: repeat the test+ antibiotics

<u>Schilling test:</u> (**D.D gastric from intestinal causes**)

- Oral dose of radioactive B12 (1 ug)+ parental large dose (1 mg) of unlabelled B12 (for saturation of TCII)
- Normally: up to 10% of radioactive dose appears in urine.
- In pernicious an.: only 5-7% appears in urine (corrected by IF).
- In intestinal causes: low dose appears & is not corrected by IF, but corrected by antibiotics.
- If not corrected by any means, so the defect is in **ileal receptors**.

Pernicious Anaemia

Def:

- Autoimmune disease
- Resulting in severe lack of IF due to gastric atrophy
- Resulting from immune destruction of acid & pepsin secreting portion of gastric mucosa.

Incidence:

- ► F: M = 1.6: 1
- Old age> 60 ys (10% < 40 ys)
- Familial
- Northern Europe

More common in :

- Relatives
- Subjects e' autoimmune dis.
- Those e' premature hair grey, blue eyes, vitiligo, blood gp A
- Associated e' HLA-3 in some cases

Diagnosis:

- ► C/P
- Megaloblastic an.
- Lack of IF (detected by Schilling test)
- Tests to detect IF antibodies
- Gastric endoscopy

Gastric secretion studies:

1- Intrinsic factor:

Measured by its vit B12 binding I unit of IF binds 1 mg of vit B12

After maximal stimulation:

N: M: secrets 2000 units in 1 hr

F: secrets ¹/₂ amount (1000 units)

In pernicious an. : only 250 units is secreted.

2- Hydrochloric acid (HCL):

Resting juice ph > 7 & doesn't fall more than 1 ph/unit after max stimulation by histamin.

In pernicious an.:

- ↓ HCL (alkaline ph)
- **3-** Gastrin:
 - ⋆ volume of gastric secretion & pepsin
 - \uparrow serum gastrin (\uparrow in blood, \downarrow in gastric juice in stomach).

Gastric biopsy:

- Shows gastric atrophy e' loss of glandular elements & replacement of mucous cells
- Inflammatory cs infiltrate (lymph & plasma cs)
- May be intestinal metaplasia

• Immune phenomena:

• Apart from atrophy of gastric mucosa, there is evidence of immune mechanism in pathogenesis of pernicious an.

I-Antibodies to gastric antigens:

•	*
IF Abs	parietal cell Abs
2 types both r Ig G	-found in 90% of cases
 Can cross placenta 	-not diagnostic as it is
→temporary IF in NB	-present in:
▶ Found in serum &	60% of cases of simple
gastric j of 80% of P.A	atrophic gastritis
CD4/CD 8 lymph	thyroid dis, D.M, addisson,
	myxedema, ch. active
	hepatitis

IF antibodies

A-Blocking Abs (Type I)

- Found in 55% of patients
- Prevent combination of IF to B12
- Found in other A.I dis.: myxedema thyrotoxicosis
 - thyrotoxicosis
 - relatives of pernicious an.

B-Binding Abs (Type II)

- Found in 35% of patients
- Prevent attachment of B12/IF complex to ileal mucosa (ileal R)
- Rarely found in other diseases than P.A, so it is **Diagnostic**
- 2- Associated e' other autoimmune diseases:

3- Response to steroid therapy:

improves gastric mucosal atrophy (HCL, gastric mucosa, IF) improves.

4-Hypo gamma globulinaemia : or Ig A deficiency:

- $\blacktriangleright 40 \text{ ys}$
- e' intestinal malabsorption
- gastric lesion but e' out plasma cell infiltration
- history of recurrent infection

5- [†] CD 4/CD8 ratio

Prognosis:

- F: after ttt: get better
- M after ttt: bad prognosis due to high incidence of Ca stomach

Classification: 1-Adult type:

see incidence

Cause:

atrophy of gastric mucosa \rightarrow absence of IF immune mechanism

2- Childhood type:

1ry Type	2ry Type (more common)
 In older children Resembles adults 	 In 1st years of life (after consuming B12 stores acquired from mother)
 IF Abs r present But no parietal cell Abs Gastric atrophy Achlorhydria 50% of cases r ass. e' endocrinopathies (Addison or myxedema) 	 No IF Abs No parietal cell Abs No gastric atrophy Normal HCL (but no IF) AR

General management of megaloblastic anaemia:

 1^{st} find whether B12 or folate is deficient & ttt accordingly In severely ill patient, give both vits in large doses. Platelet concentrate if there is \downarrow platelets. K+ if there is hypokalamia.

ttt of vit B12 def.:

if there is a cause, ttt cause

A- Oral B12 only in case of ↓ intake

In malabsorption, high doses 500-1000 ug/d

B- Parental B12 therapy:

- To replenish stores, 6 injections each 1000 ug IM (hydroxy cobalamine), given at 3-7 days intervals then,
- Maintained by 1000 ug IM every 3 months
- According to etiology, it may be temporary or permanent

Criteria to start therapy:

- Border line level of vit B12.
- Well established anaemia or neuropathy
- Haematological findings (megaloblastic changes).

ttt of folate deficiency:

- No need for injection
- Only oral dose of 5-15 mg folic a/d for 4 months (when all folate deficient RBCs r eliminated) & replaced by new folate rich RBCs.

N.B:

Before giving folate, B12 def. must be excluded, otherwise B12 neuropathy may occur (because folates utilizes B12 in its metabolism \rightarrow exaggerates its deficiency.

Folic acid must be given prophylactic ally in :

- Pregnancy
- Prematurity
- Haemolytic anaemia
- Dialysis

